C++网络编程是许多开发者在构建跨平台、高性能应用程序时的重要技能之一。Socket编程作为网络编程的核心技术,能够帮助开发者实现进程间通信(IPC)以及客户端与服务器之间的数据交换。本文将从基础概念入手,逐步讲解如何使用C++进行Socket编程,并提供代码示例和操作步骤。
什么是Socket? Socket(套接字)是一种通信机制,允许不同主机上的程序通过网络进行数据交换。它抽象了底层的网络协议细节,使开发者可以专注于应用层逻辑。
Socket的类型
地址族
AF_INET
:用于IPv4地址。AF_INET6
:用于IPv6地址。基本流程
确保开发环境支持网络编程。Linux系统自带Socket库,Windows则需要加载Winsock库。
<sys/socket.h>
和 <netinet/in.h>
。<winsock2.h>
并链接 ws2_32.lib
。#include <iostream>
#include <cstring>
#include <sys/socket.h>
#include <netinet/in.h>
#include <unistd.h>
int main() {
int server_fd, new_socket;
struct sockaddr_in address;
int opt = 1;
int addrlen = sizeof(address);
char buffer[1024] = {0};
const char* hello = "Hello from server";
// 创建Socket
if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0) {
perror("socket failed");
exit(EXIT_FAILURE);
}
// 设置Socket选项
if (setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt, sizeof(opt))) {
perror("setsockopt failed");
close(server_fd);
exit(EXIT_FAILURE);
}
// 绑定Socket到地址和端口
address.sin_family = AF_INET;
address.sin_addr.s_addr = INADDR_ANY;
address.sin_port = htons(8080);
if (bind(server_fd, (struct sockaddr*)&address, sizeof(address)) < 0) {
perror("bind failed");
close(server_fd);
exit(EXIT_FAILURE);
}
// 开始监听
if (listen(server_fd, 3) < 0) {
perror("listen failed");
close(server_fd);
exit(EXIT_FAILURE);
}
// 接受连接
if ((new_socket = accept(server_fd, (struct sockaddr*)&address, (socklen_t*)&addrlen)) < 0) {
perror("accept failed");
close(server_fd);
exit(EXIT_FAILURE);
}
// 收发数据
read(new_socket, buffer, 1024);
std::cout << "Received: " << buffer << std::endl;
send(new_socket, hello, strlen(hello), 0);
std::cout << "Hello message sent" << std::endl;
close(new_socket);
close(server_fd);
return 0;
}
#include <iostream>
#include <cstring>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
int main() {
int sock = 0;
struct sockaddr_in serv_addr;
const char* hello = "Hello from client";
char buffer[1024] = {0};
// 创建Socket
if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
std::cerr << "Socket creation error" << std::endl;
return -1;
}
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(8080);
// 将IP地址转换为二进制形式
if (inet_pton(AF_INET, "127.0.0.1", &serv_addr.sin_addr) <= 0) {
std::cerr << "Invalid address/ Address not supported" << std::endl;
return -1;
}
// 连接到服务器
if (connect(sock, (struct sockaddr*)&serv_addr, sizeof(serv_addr)) < 0) {
std::cerr << "Connection failed" << std::endl;
return -1;
}
// 发送数据
send(sock, hello, strlen(hello), 0);
std::cout << "Hello message sent to server" << std::endl;
// 接收数据
read(sock, buffer, 1024);
std::cout << "Server says: " << buffer << std::endl;
close(sock);
return 0;
}
g++ server.cpp -o server
g++ client.cpp -o client
./server
./client
绑定失败
连接超时
数据丢失
为了提高服务器的并发处理能力,可以结合多线程或多路复用技术(如select
、poll
、epoll
)。以下是一个简单的多线程服务器示例:
flowchart TD A[创建主Socket] --> B[监听连接] B --> C[接受新连接] C --> D[创建线程处理客户端] D --> E[收发数据]
#include <thread>
#include <vector>
void handle_client(int client_sock) {
char buffer[1024];
read(client_sock, buffer, 1024);
std::cout << "Client says: " << buffer << std::endl;
close(client_sock);
}
int main() {
// ...(省略创建Socket和监听部分)
while (true) {
int new_socket = accept(server_fd, (struct sockaddr*)&address, (socklen_t*)&addrlen);
std::thread t(handle_client, new_socket);
t.detach(); // 分离线程
}
return 0;
}